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Abstract

Hydrological droughts have considerable negativpaitts on water quantity and quality, and
understanding their regional characteristics isratial importance. This study presents a multi-
stage framework to detect and characterize hydicdbgroughts considering both streamflow
and water quality changes. Hydrological droughts @ategorized into three stages of growth,
persistence, retreat, and water quality variables, (water temperature, dissolved oxygen
concentration, and turbidity) are utilized to fuethnvestigate drought recovery. The framework
is applied to 400 streamflow gauges across thei@onis United States (CONUS) over the
study period of 1950-2016. The method is illusulafer the 2012 US drought, which affected
most of the nation. Results reveal the duratiosgdency, and severity of historical droughts in
various regions as well as their spatial consisésnand heterogeneities. Furthermore, duration
of each stage of drought (i.e., growth, persisteaoel retreat) is also assessed and the spatial
patterns are diagnosed across the CONUS. Congiddren water quality variables, increased
water temperature {@ on average) and reduced dissolved oxygen comt@mtr(2.5 mg/L on
average) were observed during drought episodek, dfohich impose severe consequences on
ecology of natural habitats. On the contrary, titipiwas found to decrease during droughts,
and indicate a sudden increase when drought tetesnaue to increase in runoff. Varied
drought recovery durations are perceived for d#fiférwater quality variables, and in general, it
takes about two more months for water quality \deis to recover from a drought, following the

hydrological drought termination.

Keywords: Drought, Drought recovery, Turbidity, Dissolved geyn, Water temperature,

CONUS.
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1 Introduction
Drought is among the most devastating natural tissiswhich imposes severe impacts on
various environmental and ecological aspects ofaffexted region(

).7 Despite its distinction as a climatic extremeery there is no
unanimous definition for drought because of itsfeddnt types and distinct origins
( )1 Meteorological droughts start when precipitatcmops
below normal level and may lead to hydrological aimces, which disturbs the normal
environmental functioning of a regidgn )

defined ecological drought by combining drought &g from ecologic,
climatic, hydrologic, socioeconomic, and culturapects. In ecological drought, water deficit is
defined such that it drives ecosystems beyond theashold of vulnerability, influencing the

ecosystem services and triggering feedbacks imalaand human systems.

Several studies have discussed that the severityfraquency of droughts have increased in
many parts of the world as a consequence of thagdsain rainfall and streamflow patterns,
which may be associated with anthropogenic aatwitaind climate changé(d

).7Dhus, a systematic framework for detecting dhiug

onset-termination can mitigate drought impaétsr¢ ).

Although it is necessary to understand droughtwegomechanism and duration, few studies
have investigated these topics over large spatahaihs (

)i while others elaborated on restoring functionplants {
)- stated that recovery time is the duration that

“an ecosystem requires to revert to its pre-drowgimdition”. Ecological drought recovery was

presumed to coincide with hydrological drought teration ( )5In riverine
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ecosystems, water quality is an important ecoldg@etor, which has been neglected in the
majority of drought recovery assessments. Undedstgrdrought recovery duration is essential;
if a region experiences a new drought episode befomplete recovery from an antecedent
drought event, the ecosystem would experience reevere ecological impactS4
). Categorizing a drought episode into differerstgss can shed light on drought

propagation and provide a better understanding rotight recovery. There have been few
attempts to utilize variable spatiotemporal thrédsidor categorizing droughts into different
stages [t )1 Most of the assessments merely focused
on water availability (quantity), while the recoyesf water quality has not been investigated.

More specifically, the possible lag time betweeoudiht recovery in terms of water quantity and

guality has not been studied.

The fresh water quality is correlated to streamflowogeochemical, and anthropogenic
influences. Several studies explored water quakisyiations during hydrological drought
episodes at different spatial scalésai

). outlined three driving forces for water qualityaciyes
during a drought episode, explicitly, 1) hydrolagidrivers, dilution, and mass balance, 2) the
role of increased temperature, and 3) increasedems times. Many studies concluded on
increasing water temperature during hydrologicalidht episodesY(

)6Higher water temperature intensifies biologiaetivity, leading to a
higher rate of nutrient uptake and more oxygenasse Drought or low flow condition cause
higher water temperature and less nutrient inflowvater bodiesH

). This leads to favorable changes in physical laydrological conditions for biological

growth increasing the likelihood of eutrophicatidrhus, eutrophication will increase not only
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due to changes in nutrient concentration, but dis® to hydrological and physical conditions
becoming more suitable. Recently, Sinha et al. {2G&howed that the precipitation changes
induced by climate change will substantially inaedhe riverine total nitrogen loading across
the U.S., which will exacerbate eutrophication, eesglly over the northeastern parts. The
solubility of gasses, such as oxygen, depends derwemperature and theoretically, higher
temperature causes less solubility of oxygen. Bre/studies showed that in most cases when
water temperature increases, dissolved oxygen a&ese indicating solubility is the dominant
process for the concentration of dissolved oxygen!i(

YOAdditionally, decreased streamflow during hydgital drought
episodes causes lower velocities and longer reseddimes (Mosley 2015). Therefore,
sedimentation and higher interaction of groundwatsi surface water lead to lower turbidity
during drought episodes-( )12Most of the above-
mentioned analyses have been carried out at rdgsmades, and there have been just few

attempts for investigating water quality changesrdudrought episodes over the CONUS.

There are two primary groups of drought identifieatmethods, both of which require long time
series of hydro-meteorological data. The first rodtis the probabilistic-based approach, which
provides drought intensity according to the dewiatfrom normal condition. Most of the
standardized drought indices follow this approashjch have been employed in numerous
studies J.7The second
drought identification method is the threshold-lthapproach: drought onset happens when the
variable of interest falls below a predefined thad (

)3Moreover, there are two threshold level familigs constant (i.e., a

constant percentile of annual long-term cumulatireguency distribution) and the variable
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threshold level. The variable threshold method igrenappropriate when seasonal patterns
should be taken into account, and is broadly usaddent studiess(

Y0Since the environmental functions are
related to seasonal cycles, droughts are considesetbviations from seasonal cycles and the

variable threshold method is implemented in thisigt

This paper integrates hydrological drought concegtsl its environmental impacts, and
represents a multi-stage framework to detect amagacterize hydrological droughts considering
water quality parameters. The overarching objestiviethis study are to fill the following gaps,

which have not been adequately addressed in pregisgsessments:

1) Developing a framework for hydrological drought efgton, and categorizing drought
episodes into different stages of growth, persc#eand retreat.

2) Investigating water quality variations during hyidgical drought episodes.

3) Analyzing drought recovery considering both watealdy and quantity criteria.

4) Assessing spatiotemporal and probabilistic charsties of hydrological drought

including frequency, severity, and recovery duratio

2 Materials and Method
In hydrological drought studies, drought recovesydefined as the time when the hydrological
variable of interest reverts to its normal conditif

)i The ecological perspectives reveals that a ceramrought recovery may
require longer time, and it is essential to considere criteria in addition to water quantity for
drought recovery. In this study, drought recovesydefined as a phase starting within the

drought episode and extending beyond drought textioim until the riverine ecosystem reverts
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to its pre-drought condition. To capture droughtoreery duration, drought episodes should be
identified. Figure 1 presents the methodology, Wtgonsists of three main steps explained in

the following sections.

2.1 Hydrological drought threshold determination
The characteristics of a region, data availabilagd the study objectives are the factors
which affect the threshold calculation method. Pgliantile based on the long time series is
considered as the optimum value for streamflowstoéd because it is capable of capturing
the low flow regime of a basiri( ).6To calculate daily streamflow
threshold level, daily quantiles are computed toe streamflow duration curve over the
entire observation period (1950-2016)¢ suggested the range of"7z5"
percentile as the threshold level. In this studye 83" percentile §

).is considered as the threshold level and the senes of the 365
threshold levels are generated. In other wordsetao§ 365 88 percentile values are
calculated from the available observed data fohesation This threshold level is applied
for all the stations to maintain the comparabibfycharacteristics of detected droughts over
the study area. Applying the B@ercentile threshold may result in many short quisiof
streamflow deficit, which are not necessarily saf@rdrought episodes. Therefore, a

centered moving average of 30 days is applied too#imthe jagged threshold curve

( )-

2.2 ldentifying drought stages
Comparing the daily observed flow with the threshtal detect hydrological droughts may
cause a sequence of short drought episodes, wtrechch separated {

J.Many studies eliminated any drought event sindhizn 15 days
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( )OAdditionally they applied a pooling method witte
inter-event period of 10 days to integrate sepazasnts (

), which was found to be not effective, and faileddetecting multi-seasonal drought
events. Therefore, a method is developed hereity tinese discrete events by categorizing a
hydrological drought episode into three stagesroivth, persistence, and retreat (combining
the methods utilized by and )aThe drought persistence
period is the main criterion for hydrological drétigassessment. Having identified drought
persistence, drought growth and retreat can thanvastigated. The following steps explain

each hydrological drought stage (see supplemefigre S1):

» Persistencethe period that streamflow remains below the néthr@shold level for
at least 30 consecutive days. If there are more thi@e period fulfilling this
condition during a drought episode, the longestopeis considered as the drought
persistence stage.

» Growth: moving backwards from the beginning of droughtspstence, drought
onset is the point when streamflow falls below theeshold level for less than 15
days in a T-day window (explained in the drougltbresry section). Drought growth
stage starts from drought onset until the beginwoindrought persistence.

* Retreat: moving forward from the end of drought persisterstage, drought
termination is the time when streamflow falls belthe threshold level for less than
15 days in a T-day window (explained in the drougdtovery section). Drought

retreat stage starts following the end of drougisistence until drought termination.
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2.3 Drought recovery

In this study, drought recovery starts from theibeing of the retreat stage and continues
until T-day after drought termination. The T-dajeafdrought termination (when streamflow
has reverted to its pre-drought condition) is adttedrought retreat for drought recovery,
because the basin needs more time to meet nornted uality condition. The T—day period
is defined as the required time for all water dygbiarameters to recover (to revert to their
normal conditions). Thus, a river is assumed tovec from a drought when the streamflow
and water quality parameters return to their norfnal., pre-drought) condition. Water
quality is assumed recovered when there is nofgigni difference between the median of
variable of interest and its threshold (combiningtmods by and

)3 The Kruskal-Wallis testk| )2 as a
nonparametric methods employed at 0.05 significance level to invedegsuch difference.
The historical hydrological droughts in each striéaw station were considered, and the T-
day period is calculated in order to comply witlke fiegional characteristics of each basin.
Like streamflow threshold, the normal water quatindition (threshold) is defined as the
long-term daily average of each water quality \agafor the study period, which is then

smoothed by thirty-day centered moving average.

Figure 1 — The framework for analysis of drought recoveryegiwater quantity and quality

parameters
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2.4 Study Area and Data

The Contiguous United States (CONUS) is selectedhasstudy area because of its widely
variable climate, which leads to the existence efepnial and ephemeral rivers in different

regions. There are eighteen river basins acros€@HUS, which are delineated based on the
USGS 2-digit hydrologic unit codes (excluding AlasiHawaii, and Caribbean) as shown in

Figure 2. Hydrologic Units (HU) are areas of landnfi which surface water drains to a

particular point. Among all the streamflow statiamoss the CONUS, a small fraction of them
monitor water quality parameters. We consideredhall stations operated by USGS over the
CONUS and selected the ones that meet our crit€ha. criteria for selecting stations are as

follows:

1- Streamflow data availability for at least 30 conga® years during the study period

(1950-2016);

2- Recording at least one water quality parameter witlonsecutive years of observed data

and total duration of 10 years; and

3- Being least affected by anthropogenic influences,(dams, abstraction and return flows)

Assessing all stations for the above criteria, neduded all the active stations with over 30 years
of streamflow observation that collects at least ohthe water quality parameters. Therefore,
400 USGS (the US Geological Survey) stations weldecsed considering the study period
(1950-2016), recording at least one water qualiayameter, and being least affected by
anthropogenic influences (such as dams, abstractaord return flows from irrigation systems
and power plants). Water temperature, dissolveg@xyand turbidity are assessed as vital water

guality parameters( ), and rest of the water quality parameters ardectgy due

10
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to their short record or poor spatial coverage.siig data for streamflow and water quality
parameters are estimated by the USGS therefordfisagi gaps of observed data are filled.
Figure 2 shows the location of the 400 selectetibsts, all of which measure water temperature;

whereas some stations do not record either dissaxggen or water turbidity.

Figure 2- Study area, river basin boundaries, and locatibthe selected streamflow/water
quality stations. All the stations record streamflobservations, and the water quality variables

are specified using three colors.

3 Results

3.1 Verification of the hydrological drought detectionframework: The 2012 US drought

The drought detection method applied in this stigdyerified for the historic drought event
( ». An unusually dry winter in 2011-2012 coincidedhwvarm and dry spring and
summer, and affected most parts of the CONUdIttd catastrophic drought impacts over the
affected states and caused $40 billion damage,lyrise¢ to agricultural losses: ».
Nearly two-thirds of the nation dealt with drought September 2012 according to the US
Drought Monitor (USDM). The USDM )/ detected a severe to extreme
drought episode affecting all over the CONUS witghler persistence duration in south and
Midwest. The results of our analysis also detect a hydrokdgirought event in 38 states, with a
duration of 11 months on average (ranging from 43amonths). The onset, termination, and

duration of the 2012 US drought are shown in Figufer each of the affected states. Figure 3

11
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shows that in Midwestern and Southeastern state2@12 drought tended to persist longer and
drought recovery took more time for these regionhjle drought recovery in the Pacific

Northwest took shorter time.

In this study, drought growth is defined as theiqzkrthat the hydrological variable (e.g.,.
streamflow) falls below threshold for at least 1&ysl in 60 days. Drought persistence is the
period that streamflow remains below the threslotdver 30 consecutive days. In other words,
drought growth focuses on capturing the onsetdrbaght and its initial stages, whereas drought
persistence is the period that drought intensdies lasts until amelioration and then proceeds to
the recovery stage. Therefore, the persistencegeai drought is generally longer than the
growth stage. For example, in the 2012 US drougiaipnged period of high air temperature in
late spring resulted in soaring atmospheric evdp@rademand in central US that quickly
translated to severe and extreme drought condjtidnysng the soil moisture and substantially
reducing the streamflow, especially in central USI{ ):
Therefore, for the 2012 drought the growth stage wery short, making its detection very

challenging and subsequently causing considerabypadts {

).

Figure 3— Chronology of drought stages for the 2012 drowgfetr the affected US states.

A thorough examination of water quality changesrdiés drought episode is executed. Water
temperature shows the maximum deviation from thokesbccurred in the river basins that are

located in lower latitude (see Figure S2). Addiéiltyy, Figure 3 reveals that in the sates that are

12
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located in lower latitudes, drought persistencalseto be longer. Dissolved oxygen shows the
same pattern where California, Arizona, Texas awodtls Carolina experienced the most

deviation from the normal condition with relativelgnger persistence. On the other hand,
turbidity tends to deviate most for this droughisege in mountainous areas that are located in
dry climate. Southeast US and generally the a@zetdd on east coast show the least deviation

of turbidity compared to other regions.

3.2 Spatial analysis of drought stages

Figure 4 (top) shows the number of hydrologicaludptet episodes over the CONUS during the
study period (1950-2016). It is worth mentioningtthin order to keep the maps easier to follow,
all the presented results are interpolated usingrge distance weighted interpolation method.
The figure reveals that generally, the Pacific Neest, Mid-Atlantic, and Great lakes basins
experienced droughts more frequently than othemba3he Upper Colorado and Ohio River
basins also experienced relatively frequent droegigodes. In general, Western US indicates a
tendency towards more frequent hydrological drougdents. Another drought characteristic
investigated in the figure is drought duration. Fgy 4 (bottom) shows the average duration of
drought over the CONUS. Texas, South Atlantic andsburi show longer drought duration
compared to other regions. Comparing drought fregqu@and drought duration, the regions with

more frequent droughts tend to have shorter droegisbdes.

Figure 4- Spatial distribution of number of drought (top) aakerage drought duration in days

(bottom) during the historical period of 1950-2016.

13



278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Besides the total duration of drought (shown iruFeg4), the duration of each stage of drought is
also assessed. Figure 5 illustrates the duratiodrafight growth, persistence, and recovery
across the CONUS for the study period. Figure Savstthe average duration of drought growth
(days). As seen in this figure, the South Atlanfiexas gulf, and Missouri basins indicate longer
drought growth duration compared to other regioB@gnerally, prolonged drought growth
periods cause drought identification complex, sitiee streamflow deviation is not significant
and it usually does not get attention until it tee the persistence period. Another parameter
presented in the figure is duration of drought iséesce (Figure 5b). The figure illustrates that
drought, on average, persists less than 2 monthsiast of the Eastern US. Whereas in
California, Upper Colorado, Texas, and Souris-RathiR basins, droughts tend to persist more
than three months. Lastly, mean drought recoveratdn is presented in Figure 5c. It can be
seen that there are regions located in South Adlamtid-Atlantic, Texas, and Arkansas River
basins with average drought recovery duration ofménths. Whereas, California, Pacific
Northwest, Great lakes, and Ohio River basins tendecover from drought in less than 4
months. Comparing the average duration of drougiges (Figure 5a, b, and c) discloses that
drought recovery takes longer time than droughtvtfncand persistence. Moreover, the regions

corresponding to longer drought growth require more for drought recovery.

Figure 5- Mean duration (in days) of a) drought growth; bjspgence; and c) recovery in the

historical period of 1950-2016.
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3.3 Drought impacts on water temperature

Figure 6 shows temporal changes of water temperatlissolved oxygen, and turbidity during
three hydrological drought episodes affecting thselected stations in South Carolina in 2009,
Kansas in 2014, and Oregon in 2012. These stadomghosen since they represent the mean
pattern of the river basin they are located, amy tirovide the same length of records for water
quality. A statistical analysis on all stationseals that a hydrological drought is associated with
an increase in water temperature (see Table 1sKataWallis test is applied to detect whether
there is a significant difference (at p-value<O.@&tween the median of water temperature
during a drought episode and the water temperatueshold level. Additionally, Figure 6
reveals that water temperature threshold followseasonal pattern and it tends to be higher
(/lower) in the warmer (/colder) seasons. It is thanentioning that the same pattern is seen all
over the study area. Results of the Kruskal-Walkss$ indicated that for most drought episodes
(more than 85% of all stations) there is a sigaificdifference between water temperature during
drought episodes and the normal water temperatmeshold. Additionally, the mean, median
and the maximum water temperature in all statioesevhigher than the mean, median and the
maximum water temperature threshold, respectivigigure 6 (first column) shows that water
temperature during 2-month (/4-month) drought eésoin South Carolina and Oregon
(/Kansas) are mostly above the normal water tenipershreshold level (normal condition). The
figure illustrates that water temperature reveotsts normal range 42, 68, and 27 days after
drought termination in South Carolina, Kansas, @neigon, respectively. On average, among all
stations over the CONUS, water temperature reverits pre-drought normal state 52 days after

drought termination (the required time for watemperature to recover from a hydrological

15
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drought). The spatial distribution of the averaigeetrequired for water temperature to recover

from a hydrological drought is presented in Figina.

Figure 6- Drought impacts on water temperature, dissolvedgery and turbidity during three
hydrological drought episodes occurred in Southof@a in 2009 (first row), Kansas in 2014
(middle row), and Oregon in 2012 (bottom row). Ted bar shows drought duration (onset to

termination) and the green bar indicates the reduime for water quality to recover.

Table 1 —Minimum, median, and maximum deviation of watenperature, dissolved oxygen,

and water turbidity during drought for each rivasin.

This study showed that water temperature incredaddg hydrological drought episodes, which
is in agreement with many previous assessmenis<

). Our analyses on all studied stations demonstrétat water temperature
considerably increases from the beginning of thesipience stage of drought and it remains
above the normal threshold even after drought teation. If the growth stage lasts for more
than 40 days, water temperature may increase awamgdhe growth stage. In most cases, water
temperature reaches its maximum deviation when nia&imum departure is happened in
streamflow. The minimum, median, and maximum deéwmibf water temperature from the

normal threshold for each river basin are preseimtethble 1. The table shows that the basins
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located in lower latitudes experienced higher wegerperature rise. It is worth mentioning that
the maximum water temperature increase coincideld the most severe drought episode in all

river basins.

Figure 7- Spatial distribution of average time needed forwater temperature, b) dissolved
oxygen, and c) turbidity to recover from droughteathe hydrological drought termination (i.e.

after the streamflow has reached normal conditions)

3.4 Drought impacts on turbidity

Decreased turbidity is detected during droughtagfes using the Kruskal-Wallis test (Figure 6
right column). The test indicated that for mosttbé stations (90% of them), the median
observed turbidity during drought was significantbwer (p-value <0.05) than the normal
turbidity threshold. There were few stations tHa tifference between the medians was not
significant. However, for all stations, the meanl amedian of observed turbidity during drought
episodes were lower than the mean and median afidh®al turbidity threshold, respectively
(see Table 1). Low turbidity is generally desireor fmost water consumption purposes
(specifically domestic demand). On the other hamice drought terminations mostly coincide
with a sudden increase of flow (i.e. higher rurgatises higher turbidity), the turbidity thrusts up
during the drought termination. This implies thabrm time is required for the turbidity to
recover after hydrological drought termination. Wig 6 (right column) shows that after a 2-
month (/4-month) drought episodes in South Carddind Oregon (/Kansas), turbidity needs 67

and 24 (/40) days to recover, respectively. On ayer among all stations over the CONUS,
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turbidity requires 42 days to recover after hydgmdal drought termination. Spatial distribution
of turbidity recovery time reveals that it takesdehan 60 days for most of the regions to recover
from drought (Figure 7c). There are some scatternezhs in Arkansas, Pacific Northwest,

southeast Missouri, and great Lakes river basitis kgcovery times more than 60 days.

Our analysis detected that turbidity is usually éowthan the normal threshold during
hydrological droughts, which is in agreement witte tfindings of several previous studies
( )3The improvement of
water turbidity can be attributed to less stormnésehat causes decreased runoff, which is
associated with less erosion of solid transportgh® watercourses during drought. Lower
streamflow during the hydrological drought also s=si slower velocity, which increases
sedimentation and decreases turbidity. Table 1 statlvat for the river basins located in dry
climate with mountainous characteristics (e.g. Lo@elorado and Great basins), the maximum
deviation of turbidity is higher than other riveadins. Such higher deviation implies the
tendency of these basins to terminate droughts avgbdden increase in streamflawa(

Y1t has been discussed that turbidity can
have various impacts on ecology and natural habitaigh concentration of particulate matter
during drought recovery period decreases light patien, and consequently reduces
productivity and natural habitat quality. It alstcieases sedimentation, which makes siltation

more likely, and can result in harming the haldivatfish and aquatic lifel( ).

3.5 Drought impacts on dissolved oxygen
Dissolved oxygen alteration is investigated in stthtions using the Kruskal-Wallis test to
examine if the median of observed dissolved oxygengnificantly different from the threshold.

The test shows that there is a significant diffeeebetween the medians of dissolved oxygen
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during drought episodes and the normal dissolvegyex threshold (p-value < 0.05). During
drought, the mean and median of dissolved oxygeil istations were lower than the mean and
median of dissolved oxygen threshold, respectiyee Table 1). Figure 6 (middle column)
illustrates that after a drought episode with 2 (fbnths duration, dissolved oxygen recovery
lasts for 15 and 64 (/47) days in south Carolind @nregon (/Kansas), respectively. On average,
among all stations over the CONUS, dissolved oxygegquires 51 days to recover after
hydrological drought termination. Dissolved oxygestovery takes more than 2 months in
southeast Missouri, Texas, and South-Atlantic rivasins (see Figure 7b). Moreover, Figure 6
shows that the dissolved oxygen follows a seaguai#trn and it reaches to the lowest (/highest)
level during warmer (/colder) seasons. This patierseen all over the study area. This diagram
shows the reverse relationship between water teatyperand dissolved oxygen and explains the

decreases of dissolved oxygen level during droeglgodes due to the increases in temperature.

Our analysis also identified a decline in dissoleeygen when a hydrological drought takes
place, which is in agreement with findings of mastydies showing a decrease in dissolved
oxygen during hydrological droughts{

). Generally, in river basins with perennial riveasd higher streamflow, the variability
range of dissolved oxygen is limited due to thepéeeflow in rivers, which leads to less
reaeration. On the other hand, most ephemeralsrivéth shallow flow are located in lower
latitude. Dissolved oxygen requires longer recovane in these river basins because of higher
water temperature and less oxygen solubility inespf better reaeration. Therefore, in most river
basins, water temperature is the dominant procatise( than reaeration and biological activity)
that controls dissolved oxygen level. During drauggrsistence stage, dissolved oxygen shows a

similar pattern to water temperature, and the marindeviation of dissolved oxygen happens in
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the persistence stage. Many aquatic species caivsanly within a specific temperature range
and a minimum dissolved oxygen level. Therefora)satering dissolved oxygen and water

temperature is essential for maintaining the egplagd biology of water resources systems

( )0IDroughts have caused flora and fauna
fatalities in different parts of the world, for tasce in Australial( %; southern
uUs ( )} and California [ )0 The

reported reasons for aquatic fatalities due to gintaiwere decline in dissolved oxygen level,

vanishing the natural habitat of species, losgreagns connectivity, and alteration of foadh

)

4 Discussion

Applying the hydrological drought detection meth@dtotal of 9247 drought episodes were
identified in 400 stations across the CONUS dufdif§0-2016. Figure 8 shows the relationship
between drought duration, recovery time (requireaetfor streamflow and water quality to
revert to its pre-drought state), and annual flmnoss three different river basins with diverse
climate (i.e. Pacific Northwest, Arkansas, and 8SdcAilantic). The figure illustrates that there is
a significant inverse relationship between drowtvation and the annual flow in all three river
basins (B> 0.5 and p-value<0.05). Therefore, annual streamfileficits are probably more
intense during prolonged drought events compareshtoter drought episodes. Similar results
are found for recovery time and annual flow, andese annual streamflow deficits are more
likely to result in longer recovery time. Howevegcovery time is positively correlated to
drought duration for these river basing¥m.5 and p-value<0.05), and similar pattern isnfbu
in all the river basins over the CONUS. The positrorrelation found between drought duration

and annual flow is in agreement with the findindsSo and
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) These studies also showed that if a drought dpidasts longer, drought severity
increases and the affected area deals with exdedrbaater stress!
investigated hydrological droughts and recoveryetifor south and southeastern USA, and
concluded that for longer and more severe hydroddgdroughts, longer drought recovery
duration should be expected. These findings areoirsensus with the findings of the present
study, indicating an inverse relationship betweecovery time and annual flow and a direct

relationship between drought duration and recotierng.

Figure 8 — Relationship between drought duration and annloa {left), recovery time and
annual flow (middle), and drought duration and ey time (right) over the Pacific Northwest

(top), Arkansas (middle) and South Atlantic (botjoiaer basins.

Figure 9 shows hydrological drought severity ovee CONUS for the study period. Severity
indicates the ratio of accumulated streamflow diefac streamflow in normal condition during
drought episodes (elaborated in equation 1).

yTermination o pserved Streamflow; — Threshold;
*

Termiantion
iormu Threshold;

100

Drought Severity =

if (Observed Streamflow; — Threshold;) < 0 (Equation 1)

The figure shows that California, Great basin andtls Atlantic river basins experienced more
severe droughts during the study period. Texas @odris basins also experienced severe
droughts. Comparing Figure 9 (drought severity) &iglre 4 (number of droughts) reveals an
inverse relation between drought severity and feegy in areas located in the Pacific
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Northwest, California, Great Basin, Upper Coloradexas, Arkansas, Ohio, New England,
Upper Mississippi, and Mid-Atlantic river basinshi§ inverse relationship implies that the
regions affected by more frequent droughts, expeed less severe droughts, in general. This is
found in the Pacific Northwest, Upper Colorado, amd-Atlantic river basins. Whereas, those
parts of the CONUS that experienced less frequemights (e.g. California, Texas and South-
Atlantic river basins), suffered from more severeughts.

showed that for the period of 2012-2014, Califoreperienced the most severe drought
condition in the last century. Our analysis alswl$é Southern California among the regions that
the most severe hydrological droughts have happeleitlg the study period. Additionally,
California experienced a hydrological drought il20which lasted for almost a year (Figure 3),
and that drought episode was accompanied by tworrhggdrological droughts in the following
years. and showed that Southern US experienced more
severe drought episodes compared to Northern regionng the period of 2000-2012. Figure 9
also corroborates that these areas (i.e. Floridayth®rn Plains, and Southwestern US)

experienced more severe hydrological droughts cosap® the rest of the US.

Figure 9 — Spatial distribution of normalized drought sewedtver the CONUS during 1950-
2016. Severity is defined as the ratio of accunedlatreamflow deficit to streamflow in normal

condition during drought episodes

Figure 10 illustrates the correlation between theiation of water quality parameters (during

drought episodes) and drought severity over 1& ibasins. In general, water temperature and
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dissolved oxygen are more correlated with droughiesty than turbidity. Dissolved oxygen and
drought severity are highly correlated in CalifernLower Colorado, Texas, Rio Grande and
South Atlantic river basins, all of which are lae@tin the lower latitudes. Turbidity and drought
severity correlation is the highest in MissouridaArkansas, both located in arid climate.
Comparing Figure 10 with Figure 7 reveals thathe tiver basins that require longer recovery
time for dissolved oxygen, the correlation betwekssolved oxygen and drought severity is
highest. Similar pattern is found for turbidity oery time in the Great Lakes, Missouri, and
Arkansas, where the correlation between droughgrggvand turbidity is the highest, compared
to other water quality parameters. Figure 10 shibhasthe southern US regions (basins 2-7 and
16) indicate higher correlation between water dgualariations and drought severity, with
dissolved oxygen indicating the highest correlatiamich reveals the higher vulnerability of

aquatic life to drought severity in southern US.

Figure 10 — The correlation coefficient between drought seyewith water temperature,

dissolved oxygen, and turbidity variations and di@river basins of the U.S.

The empirical cumulative distribution functions (Ef) are developed to probabilistically
analyze drought duration in the study period. Fegiit shows the CDF of drought duration for
Ohio, Missouri, and South Texas-Gulf river basifisese river basins are selected as they show
the lowest, highest, and mean drought duratiorpes/ely. The figure shows that with 75%
probability, drought durations are 180, 220, an® 8ays in Ohio, Missouri, and Texas river

basins, respectively. Additionally, historical hgtirgical droughts indicated a median (50%
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probability) duration of 110, 125, and 140 days €ihio, Missouri and Texas river basins,

respectively. In another interpretation, if a drbugpisode begins in these river basins, it is 55,
68 and 75% probable that it lasts for 200 day®ss in Texas, Missouri and Ohio, respectively.
In conclusion, it is more likely for Texas to exigeice more long-term drought events compared

to other river basins.

Figure 11- Cumulative probability distribution (CDF) of droltgduration in Ohio, Missouri, and
South Texas-Gulf coast basins, representing leasst, and mean drought duration among all

US basins, respectively

5 Summary and Conclusions

It is essential to understand drought impacts eshwater resources quality and their recovery
duration. To this end, this study developed a fraar& for hydrological drought detection in
order to categorize droughts into three stagesraoivilp, persistence, and retreat, investigated
water quality variations during droughts, analyzextovery time for each water quality
parameter, and finally assessed spatiotemporal paotabilistic characteristics of drought
episodes. The method was applied on 400 streamélods water quality stations over the
CONUS with daily observation. The historic 2012 d&ught was selected to validate the
presented methodology. On average, drought pemsistwas found to last less than 2 months in
most of the Eastern US. Whereas in California, Wpaorado and Texas river basins, drought
tends to persist more than three months. Resuttwest that, drought frequency is negatively

correlated with drought severity and duration, velasrdrought duration and recovery time are
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positively correlated. In terms of water qualitgsults showed that increased temperature,
decreased turbidity, and lower dissolved oxygenewasserved during hydrological droughts.
Average recovery time for water temperature, tutpiand dissolved oxygen were 52, 42 and 51
days following hydrological drought terminationspectively. Furthermore, turbidity recovery
time was found to be less than 60 days after droteyimination for most of the CONUS,
whereas, dissolved oxygen recovery indicated tsbee than 2 months (maximum 69 days) in

the lower latitude river basins.
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Figure S1-A conceptual diagram of drought growth, persistemetreat, and recovery stages. In
this study, persistence is when the flow remairsvibeéhreshold for 30 days or more; moving
backward/forward from persistence begin/end, drowgiset/termination is when there is 15 or
less days with flow below the threshold level iff-@lay window (T = 60 days for this study).

The gray shaded area shows streamflow deficit.

Figure S2-Spatial distribution of water temperature, dissdlegygen and turbidity deviations
from thresholds over the 2012 drought episode
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Table 1 —Minimum, median, and maximum deviation of water temperature, dissolved oxygen,

and water turbidity during drought for each river basin.

Temperature °C) | Dissolved Oxygen (mg/L)|  Turbidity (FNU)

Min Median Max | Min  Median Max | Min Median Max
1. Pacific Northwest 1 15 2.8 1 15 2.3 14 25 50
2. California 2 2.8 58 | 1.3 1.8 2.8 18 32 55
3. Great Basin 2 2.5 48 | 1.2 16 2.7 36 68 110
4. Lower Colorado 2.2 3 56 | 14 17 2.8 40 72 95
5. Upper Colorado 15 2 32 | 11 15 2.3 35 68 114
6. Rio Grande 2.2 3.2 57 | 14 18 2.6 42 61 103
7. Texas Gulf 21 3 59 | 13 1.7 3 29 36 68
8. Arkansas 15 19 55 1 14 2.8 33 66 120
9. Lower Mississippi 2.5 3 48 | 1.3 16 2.6 15 29 48
10. Missouri 1.3 2.8 43 | 1.2 15 2.2 44 72 113
11. Souri-Rec-Rainy 1.2 19 28 | 11 14 1.8 16 30 62
12. Upper Mississippi 1.5 19 3 12 15 21 18 28 52
13. Great Lakes 14 2.1 2.7 1 14 2.2 17 31 56
14. Tennessee 2 3 33 | 1.2 16 2.5 14 26 50
15. Ohic 1.2 2.2 3 11 14 2.3 11 26 46




16. South Atlantic 2.2 29 49 | 14 19 2.9 10 21 39
17. Mid-Atlantic 15 2.3 31 | 1.2 15 2.3 11 20 a4
18. New England 1.2 18 26 | 11 14 21 15 31 56






